
Recent Changes in Average Recurrence Interval Precipitation Extremes in the

Mid-Atlantic United States

ARTHUR T. DEGAETANOa AND HARRISON TRANa

a Northeast Regional Climate Center, Cornell University, Ithaca, New York

(Manuscript received 2 July 2021, in final form 20 December 2021)

ABSTRACT: Increases in the frequency of extreme rainfall occurrence have emerged as one of the more consistent cli-
mate trends in recent decades, particularly in the eastern United States. Such changes challenge the veracity of the conven-
tional assumption of stationarity that has been applied in the published extreme rainfall analyses that are the foundation
for engineering design assessments and resiliency planning. Using partial-duration series with varying record lengths, tem-
poral changes in daily and hourly rainfall extremes corresponding to average annual recurrence probabilities ranging from
50% (i.e., the 2-yr storm) to 1% (i.e., the 100-yr storm) are evaluated. From 2000 through 2019, extreme rainfall amounts
across a range of durations and recurrence probabilities have increased at 75% of the long-term precipitation observation
stations in the mid-Atlantic region. At approximately one-quarter of the stations, increases in extreme rainfall have
exceeded 5% from 2000 through 2019, with some stations experiencing increases in excess of 10% for both daily and hourly
durations. At over 40% of the stations, the rainfall extremes based on the 1950–99 partial-duration series show a significant
(p . 0.90) change in the 100-yr ARI relative to the 1950–2019 period. Collectively, the results indicate that, given recent
trends in extreme rainfall, routine updates of extreme rainfall analyses are warranted on 20-yr intervals.

SIGNIFICANCE STATEMENT: Engineering design standards for drainage systems, dams, and other infrastructure
rely on analyses of precipitation extremes. Often such structures are designed on the basis of the probability of exceed-
ing a specified rainfall rate in a given year. The frequency of extreme rainfall events has increased in the mid-Atlantic
region of the United States in recent decades, leading us to evaluate how these changes have affected these exceedance
probabilities. From 2000 through 2019, there has been a consistent increase of generally 2.5%–5.0% in design rainfall
amounts. The increase is similar across a range of rainfall durations from 1 h to 20 days and also annual exceedance
probabilities ranging from 50% to 1% (i.e., from the “2-yr storm” to the “100-yr storm”). The work highlights the need
to routinely update the climatological extreme-value analyses used in engineering design, with the results suggesting
that a 20-yr cycle might be an appropriate update frequency.
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1. Introduction

Numerous authors (Groisman et al. 2012; Kunkel et al.
2013; Walsh et al. 2014) have identified recent trends in
extreme rainfall (e.g., daily events greater than the 99th per-
centile) in the eastern United States. In addition, parts of the
region have also experienced a documented increase in flood-
ing and rainfall events that are conducive to flooding, espe-
cially in urban environments (Collins 2009; DeGaetano 2009;
Armstrong et al. 2014; Peterson et al. 2013; Georgakakos et al.
2014). Although similar trends have been documented in
other parts of the United States (Groisman et al. 2012; Cooley
and Chang 2017; Brown et al. 2020) and the globe (Groisman
et al. 2005; Fischer and Knutti 2016; Lenderink et al. 2011),
the magnitudes of the trends in the mid-Atlantic region of the
United States are particularly strong.

Increasing average temperatures lead to both increases in
atmospheric water vapor and the frequency of convective storm
events (Coumou and Rahmstorf 2012) that have been impli-
cated as physical reasons for these changes. In addition, changes
in frequency, intensity, and tracks of tropical and extratropical
cyclones contribute to trends in extreme precipitation (e.g.,
Shepherd et al. 2007; Lau et al. 2008; Prein and Mearns 2021).
In some cases, linkages to certain atmospheric circulation pat-
terns have been posed as influencing changes in precipitation
extremes (e.g., Kenyon and Hegerl 2010). Nevertheless, climate
model simulations suggest that extreme precipitation events will
continue to increase through the twenty-first century (e.g.,
Donat et al. 2016; Ning et al. 2015; Sun et al. 2016).

A practical consequence of these increases in extreme pre-
cipitation frequency (DeGaetano 2009; Groisman 1992; Hei-
neman 2012; Kunkel et al. 1999; Kunkel 2003) is that the
assumption of a stationary climate record compromises the
specifications used to design infrastructure. For example,
DeGaetano (2009) reports that rainfall amounts once consid-
ered to be 1-in-100-yr events, as based on the data record
available from 1950 to 1978, occur as often as once every 67
years as based on data observed across the Northeast from
1978 to 2008 and with even greater frequency through the
twenty-first century (e.g., DeGaetano and Castellano 2017).
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Despite these established trends in extreme rainfall, recent
flooding disasters and the range of climate-related risks and
vulnerabilities associated with extreme rainfall, design stand-
ards and regulations in much of the region are currently based
on climate data that has not been analyzed since 2000 (Bon-
nin et al. 2006). Infrastructure design has long relied on statis-
tical extreme-value analysis (Yarnell 1935), in which an
extreme-value function is fitted to a relevant observed time
series, resulting in a “design storm.” For these design storms,
the n highest values from the observed precipitation record
are typically extracted and analyzed to yield the probability of
exceeding a specific rainfall amount. These probabilities are
often referred to as average recurrence intervals (ARI).

This, of course, assumes that the historical probabilities apply
to future conditions. However, given the many studies docu-
menting observed and projected increases in extreme precipita-
tion frequency, this assumption may no longer be valid,
depending on the partial-duration series period of record, spe-
cific station, return period and accumulation duration (e.g.,
Cheng and AghaKouchak 2014a; Myhre et al. 2019). To accom-
modate trends in precipitation, some extreme-value analyses
incorporate nonstationarity in the underlying extreme-value
function (Katz 2010; Cheng et al. 2014b).

Given the observed trends in extreme rainfall, particularly
across the mid-Atlantic United States, it is unclear how the
inclusion of 19 additional years of rainfall data have affected
the rainfall extremes published in 2000. Since several loca-
tions have experienced record rainfall events since 2000, or at
least rainfall events comparable to the highest in the pre-2000
record, it is likely that the values published in NOAA Atlas
14 (Bonnin et al. 2006) underestimate the rainfall extremes
that factor in the more recent years of data. This study quanti-
fies the changes in extreme rainfall recurrence amounts since
2000 across the region. In section 2, the underlying data are
described, which include precipitation accumulation at both
daily and hourly time scales. The methods used to analyze
these datasets and determine the statistical significance of the
observed differences are outlined in section 3. The results are
summarized in section 4, including a discussion of how recent
extreme rainfall events and length of the precipitation record
affect ARI estimates. In the concluding section, attention is
paid to how the results might be applied in scheduling routine
updates to published extreme rainfall statistics.

2. Data

Daily Cooperative Observing Network stations within the
area extending from 46.08 to 36.08N and from 84.08 to 71.08W
were identified. From these locations, a set of 480 base sites was
retained on the basis of the following criteria: 1) inclusion in
NOAA Atlas 14, volume 2 or volume 10 (Bonnin et al. 2006;
Perica et al. 2019), 2) a data record that extends from at least
1950 through 2019, and 3) less than 5% of daily precipitation
missing. Similarly, a larger set of regional stations was retained
that included the base stations and additional sites having at
least 20 years of record after 1980. For all sites, daily rainfall
observations and data quality flags were extracted from the

Applied Climate Information System (ACIS) and reflect the
values in the Global Historical Climatology Network Daily
(GHCN-D; Menne et al. 2012) on 13 January 2021.

Similar criteria were used to select hourly observing stations.
These sites were extracted from one of three databases: 1)
NOAA National Centers for Environmental Information
(NCEI) COOP-Hourly Precipitation Data (HPD), version 2
(Wuertz et al. 2018), for stations with available records after
2014; 2) NCEI’s Hourly Precipitation Dataset (HPD), known
historically as DSI-3240 (https://www.ncei.noaa.gov/metadata/
geoportal/rest/metadata/item/gov.noaa.ncdc:C00313/html#) for
stations with records ending prior to 2014; and 3) NCEI Surface
Data Hourly Global (DS3505) for National Weather Service
Automated Surface Observing System stations. A total of 92
base hourly stations were available within the study region.

Using the daily rainfall data, partial-duration rainfall series
(PDS) were formulated for the base and regional stations.
Similar PDS were obtained using hourly data. Separate PDS
were developed for 1-, 2-, 3-, 7-, 10-, and 20-day and 1-, 2-, 3-,
6-, 12-, 24-, and 48-h precipitation accumulations. Daily precip-
itation values flagged as “accumulated” were retained if the
accumulation period was less than or equal to the indicated
duration. For example, a value that represented a 2-day accu-
mulation was excluded from the 1-day PDS but was included
as part of the 2-or-greater-day PDS. When multiple PDS
members occurred within a 14-day window, the smaller value
was excluded from the PDS, to satisfy the requirement that
PDS members were independent. This time interval was
selected to approximate the time scale of unique synoptic
weather patterns. The temporal independence for hourly data
was a function of duration, ranging from 24 h for durations
from # 3 to 336 h (14 days) for durations $ 24 h. Events in
the 6- and 12-h-duration PDS were required to be separated
by more than 48 and 168 h (7 days), respectively.

For each station, an array of 29 PDS was generated such that
the shortest PDS included data from 1950 to 1990 and the lon-
gest was based on data from 1950 to 2019. In each case, the
PDS contained n values, where n was defined as the total num-
ber of nonmissing precipitation values divided by the total num-
ber of days or hours in the relevant period of record rounded to
an integer. The use of these standard time periods was neces-
sary to allow comparisons among stations. Using variable
record lengths, including the inclusion of data prior to 1950,
would preclude such comparisons. The use of 50–70-yr records
maximizes the number of stations available for analysis and lim-
its the influence of data from earlier years that may not be rep-
resentative of recent climate conditions while assuring an
adequate sample size for extreme-value analysis (DeGaetano
and Castellano 2018). Records of this length also mitigate the
influence of interdecadal variations in rainfall, which may influ-
ence shorter time series (Yu et al. 2016).

3. Methods

a. Computation of recurrence interval rainfall amounts

Using the array of 29 PDS at each station, rainfall amounts
corresponding to recurrence probabilities of 50%, 20%, 10%,
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4%, 2%, and 1% (i.e., 2-, 5-, 10-, 25-, 50-, and 100-yr storms)
were computed by simulating the methodology used in
NOAA Atlas 14 (Bonnin et al. 2006; Perica et al. 2019). First,
the Python L-moments package (https://pypi.org/project/
lmoments/) was used to fit the generalized extreme value
(GEV) distribution to each station’s 29 PDS using the meth-
ods of Hosking (1990). Other theoretical extreme-value distri-
butions exist, but the GEV has been used extensively in prior
extreme rainfall analyses (e.g., Papalexiou and Koutsoyiannis
2013). Given the L-moments estimates for the GEV parame-
ters, the L-moments library method was used to obtain the
specified quantiles of the GEV distribution.

The regional L-moments procedure used in NOAAAtlas 14,
volume 10 (Perica et al. 2019), was adapted. Although most
sites lie outside the region covered by this atlas, the difference
in methodology employed to develop regions in the later atlas
was an improvement over the earlier implementation. A

maximum of 20 neighboring stations, identified from the previ-
ous set of regional stations, formed a region around each base
station. Sample L-moments were obtained for each regional sta-
tion using the L-moments library “samlmu” routine, and a
weighted average of the higher-order moments was computed
on the basis of the length of each station’s PDS. These weighted
averages along with the base station’s location parameter were
then used to obtain GEV parameters and quantiles.

Although this did not exactly replicate the Atlas 14 meth-
odology, the differences between the resulting ARI rainfall
amounts and those given by Atlas 14 were generally small,
with most values falling within the published Atlas 14 confi-
dence intervals (Figs. 1 and 2). For the daily return periods,
approximately 40% of the stations’ 2-yr ARI amounts were
within 62.5% of the corresponding Atlas 14 value, with over
75% within 65% of the published value. For the 5- and 10-yr
ARI, values tended to be lower than the Atlas 14 values, but

FIG. 1. Differences between 1-day (converted to 24 h) Atlas 14 and project-computed recurrence interval rainfall
amounts. (a) Boxplots show differences for all recurrence intervals across all stations in the study domain in (b), with
the horizontal dotted lines denoting a 65% difference between the values. Station-specific differences are shown for
the (b) 2- and (c) 100-yr recurrence interval amounts. The circular station markers indicate computed values that fall
within the published Atlas 14 confidence interval, with values falling outside the confidence interval denoted by
diamonds.
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for longer ARI most of the differences became positive. For
the 50-yr ARI, the median difference between the two com-
putation methods was 12.5%, whereas for the 100-yr storm
approximately one-half of the stations’ ARI amounts were
over 7.5% higher than the published Atlas 14 values.

Although there is not a clear geographic bias to the differ-
ences, the 100-yr ARI values computed for stations in New York
and New England always fall within the Atlas 14 confidence
intervals (Figs. 1b,c). In the southern part of the region, even

though the differences are of the same magnitude as those for
stations in the northern states, the values tend to fall outside the
Atlas 14 confidence bounds more frequently. This results from
the changes in the Atlas 14 methodology used to regionalize sta-
tions and compute confidence intervals. The methodology used
in the earlier volume 2 consistently resulted in narrower confi-
dence interval widths relative to the newer procedure.

Differences in the lengths of the period of record used in
Atlas 14, in comparison with the fixed 1950 starting point

FIG. 2. Differences between (a) 1-h (converted to 60 min) and (b) 24-h Atlas 14 and project-computed recurrence
interval rainfall amounts. Boxplots show differences for all recurrence intervals across all stations in the study domain
with the horizontal dotted lines denoting a 65% difference between the values. Station-specific differences are shown
for the (c) 2-yr 1-h, (d) 2-yr 24-h, (e) 100-yr 1-h, and (f) 100-yr 24-h recurrence interval amounts. The circular station
markers indicate computed values that fall within the published Atlas 14 confidence interval, with values falling out-
side the confidence interval denoted by diamonds.
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record used in this study, contribute to the overestimation of
100-yr ARI amounts relative to 2-yr values. For example, a
.20% difference occurred at Wilmington Porter Reservoir in
Delaware (Fig. 1c) for which the Atlas 14 rainfall record
begins in 1933. The PDS values that occurred prior to 1950
are systematically smaller, with only 2 of the potential 17 PDS
years (12%) recording rainfall . 9.27 cm (the 1-day 5-yr
storm), whereas, in the period from 1950 to 2000, 17 of the 51
years (33%) record rainfall exceeding this value. Thus, the
prevalence of positive differences reflects the tendency for
extreme rainfall to increase with time (e.g., DeGaetano 2009)
and also the potential for the longer PDS length in Atlas 14 to
temper the extremes. Since subsequent analyses were based
on differences in recurrence interval rainfall amounts between
the longer (1950–2019) and shorter (1950–2000) PDS periods,
it was important to adapt a consistent methodology and refer-
ence period through time.

The Atlas 14 differences at the subset of stations with hourly
data are similar (Fig. 2). Like the daily stations, the differences
for the 1- and 24-h amounts display a similar pattern with
recurrence interval. In all three cases (daily, 1 h, and 24 h), the
simulated procedure underestimates the Atlas 14 10-yr recur-
rence interval values at most of the stations. The 2-yr ARIs
exhibit a similar number of over and underestimates, and the
100-yr ARI amounts are predominately overestimated, espe-
cially for the hourly duration (Fig. 2a). Regardless of ARI, the
hourly durations are more frequently overestimated relative
to the 24-h durations. Collectively, however, like the daily sta-
tions, the computed values that are typically within 65% of
the Atlas 14 value. Also, like the daily stations, there is not a
strong geographic pattern to the differences (Figs. 2c–f).
Across New York and New England where the Atlas 14 confi-
dence intervals are wider, all the simulated values fall within
the Atlas14 confidence intervals.

b. Post-2000 rainfall extreme differences

Given the ARI rainfall amounts for each duration, a per-
cent difference was computed such that

DPend � P d,r( )end=P d,r( )base,
where P is the precipitation amount corresponding to dura-
tion d and ARI r. The subscripts “end” and “base” represent
the ending years of the two PDS being compared. Although
different base years can be used, hereinafter base = 2000.
When the end value is 2019, DP2019 compares the ARI using
the 1950–2019 PDS with that corresponding to the 1950–2000
PDS used to simulate the Atlas 14, volume 2, record.

The significance of DP2019 was assessed using a resampling
analysis. For recurrence interval amounts computed using
nonregional L-moments, the GEV parameters fit to the base
station’s 1950–2019 PDS were used to randomly generate
1000 PDS using the random variates method in the scipy.stats
genextreme library (https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.genextreme.html). For each random
(unsorted) PDS, the L-moments procedure was used to fit
new GEV parameters using all 70 values in the randomly gen-
erated PDS and a second set of GEV parameters based on

only the first 50 of the random PDS values. This was intended
to simulate the difference between the current (through 2019)
PDS available at a station and that available in 2000. Quan-
tiles were computed from these two GEV distributions and
differenced, giving a set of 1000 random DP2019 values from
which the one-tailed probability of obtaining the observed
DP2019 value was determined.

Two similar procedures were used to obtain randomized
DP2019 distributions for the regional L-moments results. In
both cases, the GEV parameters obtained from the regional
L-moments analysis of the observed PDS (as opposed to
those obtained solely for the base station) were used to gener-
ate the 1000 random PDS. In the first method, the original
weighted regional L-moments were used to obtain new GEV
parameters from the randomized PDS that were ultimately
used to construct the randomized DP2019 distribution. Thus,
while 1000 randomized PDS were generated, only the
L-moments location parameter varied in each simulation.

In the second method, random PDS were also generated
for each of the regional stations allowing different regionally
weighted higher-order L-moments parameters to be used in
each random simulation. There are trade-offs to each method.
The first likely underestimates the variation of the random
DP2019 distribution. The second does not account for any
potential autocorrelation in the neighboring PDS as each is
generated independently. Nonetheless there was not a sys-
tematic difference in the DP2019 probabilities generated by
one approach as compared with the other.

4. Results

Figure 3 shows DP2019 daily duration boxplots for 2- and
100-yr recurrence intervals. There has been a general increase
in extreme rainfall in the 1950–2019 period relative to
1950–2000 as indicated by the medians of all of the boxplots
exceeding DP2019 = 1.00. The height of each boxplot repre-
sents the variation in DP2019 across the 480 stations shown in
Fig. 1. There is little difference in DP2019 relative to ARI or
duration (Fig. 3). This is also true for the ARI intervals not
shown (Fig. S1 in the online supplemental material). Except
for the 100- and 50-yr ARI, 75% of the stations have experi-
enced an increase in extreme precipitation amounts since the
publication of Atlas 14 regardless of duration. In general,
the median increase is near 2.5%, with about one-quarter of the
stations experiencing an increase of between 2.5% and 5%.

These increases occur regardless of whether the ARI pre-
cipitation amounts are computed using regional L-moments,
which incorporate higher-order moments from up to 20 sur-
rounding stations, or when all moments are based only on
PDS from each station individually (Fig. 3). At most stations,
the DP2019 values are similar, with increases generally
between 0% and 5% for the 2-yr ARI and slightly greater
increases indicated for the 100-yr ARI. The most pronounced
difference when using the single-station fits is the increase in
the number of outliers in the 100-yr ARI DP2019 values, with
increases as large as 80% noted for some sites (not visible on
truncated y axis) and decreases of 20% occurring for 1- and
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2-day duration events (Fig. 3). Although in the majority of
cases the two approaches show similar changes, the regional
approach is preferred. It dampens the influence that individ-
ual events may introduce in the higher moments, while still
accounting for any changes in the fit distributions’ location
parameter that have occurred in the recent 20-yr period. This
is supported by, for example, DeGaetano (2009) and Cheng
and AghaKouchak (2014a), who show recent observed
changes in precipitation have generally not resulted from sig-
nificant changes in the higher moments.

The DP2019 boxplots for hourly durations are analogous to
those for daily durations (Fig. 4, along with Fig. S2 in the
online supplemental material). Regardless of ARI or hourly
duration, the median DP2019 values are always . 1.0 and, like
the daily values, except for the longest ARI, nearly 75% of
the stations have experienced an increase in hourly extreme
rainfall since 2000 in the regional analysis. Collectively, the
median increase is near 2.5%, with about one-quarter of the
stations experiencing an increase of between 2.5% and 5%.
Both the regional and single-station L-moments approaches
yield similar results, with the exception of more variability for
the 100-yr ARI adjustments that is especially due to several
large outlier adjustments.

There is not a strong spatial pattern in the DP2019 values for
1-, 7-, or 20-day durations, particularly for the 2-yr ARI (Fig. 5).
The prevalence of DP2019 values exceeding 1.0 is readily appar-
ent in Fig. 5, with these values distributed evenly across the
region. Likewise, the highest DP2019 values occur across the
region as do the stations for which DP2019 is , 1. For the 100-yr
ARI, the spatial patterns of DP2019 are also indistinct. The one
exception is for the 7-day duration, where stations exhibiting
DP2019 of ,1 have a tendency to be located in the western part
of the region from New York southward through Ohio, western
Virginia, and West Virginia. This pattern is also prevalent for
the 20-day duration, with nearly all stations in New England
and along the Atlantic coast showing DP2019 values of .1. For
hourly durations, a consistent spatial pattern in DP2019 is not
readily apparent (Fig. 6).

Figures 7 and 8 illustrate several DPend time series. In all
cases, the DPend corresponding to the year 2000 (i.e., DP2000)
is 1.00 by definition. Values greater than 1.00 indicate an
increase in rainfall intensity for a particular recurrence inter-
val as data beyond (or before) 2000 are considered. At Phila-
delphia, Pennsylvania (Fig. 7), there is little difference
between the DPend values computed using regional versus sin-
gle station L-moments for the 100-yr ARI based on the hourly

FIG. 3. Boxplots showing the ratios of daily (a),(b) 2- and (c),(d) 100-yr ARI precipitation amounts computed using
the 1950–2019 PDS to those based on a 1950–2000 PDS. (left) ARIs are computed using regional L-moments, and
(right) values are based on a single-station L-moments fit.
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or daily data record. For the 2-yr ARI, particularly for the 24-
h and 1-day durations, the values are also similar with the
regional DPend values increasing at a slightly faster rate than
the single station values, particularly after 2012 when three
successive rainfall events became the largest values in the
PDS series. The difference in the regional and single-station
DPend values is more pronounced for the 1-h and 7-day
durations.

Figures 7c and 7d also show how DPend is affected by the
starting date of the PDS. Although DPend increases in the
post-2000 period when the full 1900–2019 record is used, its
change is moderated relative to that based on a 1950 starting
date. This is not a consistent response among stations with
records that start prior 1950, as it is influenced by the magni-
tude of the individual rainfall events included in the PDS
from the pre-1950 period. At Philadelphia, the 31 largest
24-hourly rainfall events in the full 120-yr PDS occur in the
post-1950 period. Furthermore, only 9 of the 120 PDS values
occurred prior to 1950; hence the full-record ARI amounts
fall below those based on the 1950–2019 values.

Time series of DPend are compared for two sets of adjacent
stations in Fig. 8, one along the Massachusetts–New Hamp-
shire border and the other set in western Pennsylvania. These
station pairs were selected such that at one station the daily
DP2019 value exceeds 1.00, indicating that the extreme rainfall
has increased since 2000, while the other station is character-
ized by DP2019 , 1.00. At Middleton, Massachusetts (Fig. 8a),

the 100-yr ARI daily DP2019 is , 0.95, whereas at Concord,
New Hampshire (Fig. 8b), this DP2019 exceeds 1.10. These dif-
ferences arise due to the magnitudes of the PDS events that
were added in the post-2000 period. At Concord, new PDS
maxima occurred in 2005 and 2006. This combination of
events caused the new 100-yr ARI amount to increase by
more than 10%. Two additional years experience a daily rain-
fall total that exceeds the 90th percentile of the PDS. These
result in smaller increases in the 100-yr ARI amount (,1%).
Years in which the PDS additions fall between the 50th and
90th percentile of the PDS result in constant or slowing
declining ARI amounts.

At Middleton (Fig. 8a), the post-2000 period is mainly char-
acterized by new PDS entries that fall below the median. This
results in a fairly steady decline in the 100-yr ARI precipita-
tion as the record length expands without the occurrence of
new extremes. The only increase noted in the post-2000
period is associated with the .90th percentile event in 2006.
While both stations experienced relatively large daily rainfalls
in 2005 and 2006, the more extreme magnitude of both events
at Concord, relative to the other PDS members results in the
overall increase in 100-yr ARI precipitation.

At Indiana 3 SE and Schenley Lock 5 in Pennsylvania, the
behavior of the DPend series for 2-yr ARI is similar (not
shown). Mainly submedian PDS additions and no new PDS
maxima lead to a steady decline in 100-yr ARI precipitation
as the record length increases at Indiana 3 SE (Fig. 8c),

FIG. 4. As in Fig. 3, but for hourly durations.
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FIG. 5. Station-specific DP2019 ratios for (a) 1-day 2-yr, (b) 1-day 100-yr, (c) 7-day 2-yr, (d) 7-day 100-yr), (e) 20-day
2-yr, and (f) 20-day 100-yr ARI rainfall amounts.
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whereas at Schenley Lock 5 the occurrence of four PDS
events exceeding the pre-2000 maximum leads to a steady
increase in 100-yr ARI precipitation.

The use of 2000 as the standard base year when computing
DPend was a practical consideration given this is the ending
date for data included in Atlas 14, volume 2; however, it pro-
vides little insight as to how extreme rainfall in the region has
evolved relative to other data periods. Figures 7 and 8 imply
that if the data record ended in 1990, which is the case for
other earlier extreme rainfall atlases encompassing the region
(e.g., Wilks and Cember 1993), the values of DP2019 would in
some, but not all, cases exceed the values that use 2000 as the
base year. Whereas, if Atlas 14, volume 2, had been updated
in 2010, the resulting DP2019 values would have been consider-
ably smaller than their counterparts using base = 2000.

Figure 9 shows this to be the case across the region. There
is a steady decrease in DP2019 with base year for both the 2-yr
and 100-yr RI. At more than 75% of the stations, DP2019

exceeds 1.0 for base years from 1990 through 2000. Even for

PDS series having base years as late as 2005 and 2010, more
than one-half of the stations have DP2019 values exceeding 1.0.
In general, as each additional 5-yr period is included in the
base PDS, the 2-yr ARI DP2019 value decreases by approxi-
mately 0.75% (i.e., a total change in DP2019 of 4% between
the 1990 and 2015 base year values). A similar, albeit slightly
larger, change is evident for 100-yr ARI precipitation, with
the DP2019 medians for 1990 and 1995 base years nearly 5%
higher than that using 2015 as the base. The DP2019 medians
also decrease more quickly, with relatively large 2% decreases
associated with the 2000 and 2005 base years and little differ-
ence between DP2019 medians for base years after 2010. Also,
the DP2019 values for the 100-yr RI are more variable among
the stations than those for 2-yr RI. This is especially evident
for shorter base record lengths (i.e., base years of 1990–2000).

Collectively, Fig. 9 offers some insight as to the appropriate
frequency for routinely updating extreme rainfall atlases, par-
ticularly in light of recent trends in extreme rainfall and the
complications that arise from the assumption of a stationary

FIG. 6. As in Fig. 5, but for (a) 1-h 2-yr, (b) 1-h 100-yr, (c) 24-h 2-yr, and (d) 24-h 100-yr ARI rainfall amounts.
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climate record in these analyses. However, other practical
considerations such as the consequences of changes of this
magnitude to engineering design, resilience and cost also
apply. Excluding these nonclimatological factors, the statisti-
cal significance of these changes can provide some guidance
as to the appropriate update interval. In the simplest case, the
magnitude of the DP2019 (using 2000 as the base) falls within
the Atlas 14 90% confidence interval at nearly all stations.
For those stations in the southern part of the regions (i.e.,
those included in Atlas 14, volume 2), the confidence intervals
for both the 2- and 100-yr ARI are on the order of 610%,
whereas New York and New England stations have wider
620% confidence intervals for these ARI. Thus, it could be
argued that the published uncertainty bounds encompass
these time-dependent variations. Nonetheless, rarely are the
confidence intervals applied in practice, highlighting the need
to assure that the published recurrence interval rainfall values
are a true reflection of current climate conditions.

In Fig. 10, the significance of DP2019 using 1990, 2000, and
2010 as the base is assessed at each station relative the change
that would result when 30, 20, or 10 years are randomly
excluded from the 70 value (1950–2019) PDS. The method in

which the PDS of all regional stations are randomized is used.
Across the region the number of significant (probability p .

0.90) positive changes increases as more years are excluded.
For the 2-yr ARI, only 2% of the series show a significant pos-
itive change (p . 0.99) using the full 70-yr PDS versus the
shorter 60-yr record as compared with 6% of the series when
the shorter PDS simulates a 50-yr record and 9% of series
when the PDS is limited to a 40-yr record. For the 100-yr
ARI, omitting the last 10 years from the simulated PDS
results in a significant positive change (p . 0.99) in 3% of the
cases, whereas when the last 20 and 30 years are excluded, the
change is significant in 12% and 11% of the cases, respec-
tively. When a lower (p . 0.90) significance level is consid-
ered, over 40% of the 50-yr time series (and 36% of the 40-yr
series) show a significant change in the 100-yr ARI relative to
the full 70-yr record as compared with only 27% of the 60-yr
time series.

The difference between the longer and shorter PDS is more
pronounced when the number of significant decreases is com-
pared with the increases. For the 2-yr ARI, there are 4 times
as many significant (p . 0.95) increases as decreases when the
last 10 years are excluded, but this proportion increases to

FIG. 7. The DPend for (a),(b) 1-h, (c),(d) 24-h, (e),(f) 1-day, and (g),(h) 7-day (left) 2- and (right) 100-yr recurrence
interval rainfall amounts based on PDS ending in the specified years [the value of end in Eq. (1)] based on data for
Philadelphia. The red line is the ARI amounts based on the regional L-moments analysis, and the blue line represents
the L-moments fit to only the Philadelphia data. The dotted red line in (c) and (d) shows the ARI amounts based on
the full 1900–2019 period of record. The bars show the largest new rainfall amount that is added to the PDS each year.
Purple bars indicate that the new value is the maximum in the PDS, and light-blue, green, and brown bars indicate
new values .90th percentile, between the 75th and 90th percentile, and between the 50th and 75th percentile of the
PDS, respectively. Red bars are values falling below the median.
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approximately 40–100 times as many increases as decreases
when the last 20 and 30 years are excluded (Figs. 10a,c,e). For
the 100-yr ARI, there are about 4 times as many significant
decreases as increases based on the simulated 1950–2009 PDS
as compared with over 9 times as many increases as decreases
using the simulated 1950–90 PDS.

The choice of randomization method had little effect on the
results. When the base series PDS was randomized and the
higher-order moments from the original regional average
retained, there were more significant increase than decreases
and an increase in the number of significant differences as
more years were excluded from the analysis (Fig. S3 in the
online supplemental material). Unlike when both the base
and regional PDS were randomized the number of significant
increases for the 2-yr and 100-yr ARI were similar. When the
GEV distribution was fit only to randomized PDS from the
base station, many more significant increases occurred for
the 2-yr ARI than for the other resampling schemes, espe-
cially when the 1950–90 and 1950–2000 data records were sim-
ulated (Fig. S4 in the online supplemental material).
However, very few stations showed significant changes for the
100-yr ARI (Fig. S4). This was the result of the very wide
confidence intervals that resulted when the higher-order
moments did not reflect a more stable regional average.

Similarly, the results for other durations were consistent
with the 1-day patterns of significant differences. In Fig. S5 of
the online supplemental material, the randomized regional
approach is applied to 7-day precipitation duration PDS and,
like the daily durations, this yielded more significant increases
than decreases, more significant increases for the 2-yr ARI
than for the 100-yr ARI, and an increase in the number of sig-
nificant differences as more years were excluded from the
analysis.

FIG. 8. The DPend for 1-day ARI rainfall amounts based on PDS ending in the specified years [the value of end in
Eq. (1)] based on 2-yr ARI data for (a) Middleton and (b) Concord and 100-yr ARI data for (c) Indiana 3 SE and (d)
Schenley Lock 5. The red line and bars are as in Fig. 7.

FIG. 9. Values of DP2019 using different base years for (left)
2- and (right) 100-yr ARI precipitation amounts across all stations
in the study domain.

D EGAE TANO AND TRAN 153FEBRUARY 2022

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 09:06 PM UTC



FIG. 10. Sign (color) and statistical significance (shape) of DP2019 for daily precipitation using (a),(b) 1990, (c),(d)
2000, and (e),(f) 2010 as base years for (left) 2-yr ARI and (right) 100-yr precipitation amounts using the randomized
regional PDS approach. Green symbols denote increases, and brown symbols decreases. Diamonds and stars indicate
significance at the a = 0.99 and 0.95 levels, respectively.
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5. Conclusions

Across the mid-Atlantic region of the United States, most
stations with .70-yr-long daily precipitation records have
seen an increase in 2-, 5-, 10-, 25-, 50-, and 100-yr recurrence
interval rainfall since 2000. The positive changes occur at over
75% of the stations, with changes exceeding 2.5% at more
than one-half of the stations. These changes are consistent for
all ARIs and also for durations ranging from 1 to 20 days.
Similar changes are also noted for hourly data, with over 75%
of the observation sites experiencing increases, and 50% of
these increases exceeding 2.5%. These hourly changes closely
match the changes noted for daily data, indicating that when
considering the most extreme events, recent increases in
extreme precipitation are similar across a wide range of dura-
tions from hourly to multiday. Given that over 50% of the
most extreme hourly rainfall events occur in conjunction with
an extreme daily rainfall, this similarly is not surprising. As
similar changes occur with rainfall durations as long as 20
days, which have much less overlap with hourly extremes, this
may suggest that the mechanisms responsible for increases in
the largest precipitation events may be independent of
duration.

Across the region, there is not a strong spatial pattern in
the observed changes in these recurrence interval rainfall
amounts. Rather the increases and decreases are scattered
throughout the study domain. In some locations, however,
clusters or stations with predominant increases or decreases
exist. This is likely an artifact of the spatial extent of specific
rainfall events. Changes in the extreme ARI rainfall are
strongly affected by the occurrence of one or more events in
the recent record that exceed the previous maximum rainfall
within the partial-duration series. Such events are likely to
affect several adjacent stations leading to this clustering. Simi-
larly neighboring stations that experienced the highest PDS
events in the earlier part of their records, with few high PDS
values in recent years, experience a consistent decrease in
DP2019. This highlights that it is the occurrence of new rainfall
events exceeding the previous PDS maximum or multiple
new events in the upper decile of the PDS that apparently
drive the observed changes in DP2019, rather than simply an
increase in rainfall events of .99th percentile [e.g., like those
used in Groisman et al. (2005)] that are likely to fall below
the median PDS value.

Collectively, the results give some insight into the appropri-
ate frequency at which to update extreme rainfall atlases such
as NOAA Atlas 14, particularly in regions where changes in
extreme rainfall frequency are evident. Decadal updates, as is
common with climate normals (Arguez et al. 2012), are not
warranted as the number of significant changes is small, the
proportion of positive and negative changes are relatively
similar, and the magnitude of most changes is within 62.5%
of the full-record value. Routine updates on a cycle from
20 to at most 30 years, however, should be considered. Over
this interval, many more stations show significant changes.
Increases in extreme rainfall have been experienced at over
75% of the stations during these time intervals, with the mag-
nitude of change for the longest ARIs exceeding 10% at

one-quarter of the long-term stations in the region. Changes
of this magnitude generally exceed the current Atlas 14 confi-
dence bounds in those states covered by NOAAAtlas 14, vol-
ume 2.

Although these results provide some guidance as to the ratio-
nal update frequency for extreme rainfall analyses, an addi-
tional consideration that is beyond the scope of this work, is the
extent to which the earliest years should be considered at sta-
tions with long periods of record like Philadelphia (Fig. 7c). In
such cases, where few PDS members exist in the early part of
the record, including the entire record (i.e., not excluding the
earliest years) tempers the magnitude of change that results
from any increase in the frequency of extreme events in recent
years. A 70-yr record was adopted here, in line with DeGaetano
and Castellano (2018) who showed that the influence of mod-
estly nonstationary PDS tended to be minimized for this record
length. Adopting a fixed limit on PDS length in practice, how-
ever, is not ideal because it could potentially exclude large PDS
that occurred earlier in the record. A potential approach would
be to test longer-than-70-yr PDS for significant trends in the
location parameter of the fit distribution and choose PDS on
the basis of these results. This approach would be particularly
relevant in regions where precipitation extremes exhibit pat-
terns of interdecadal variability.
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